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Abstract. The dynamical critical exponent z is obtained through a Monte Carlo Renormali- 
sation Group calculation for the eight-vertex model with non-conserved dynamics. The 
value of z at several points along the critical line is evaluated. No appreciable variation 
in z relative to the Ising value is observed within the accuracy of our work. 

1. Introduction 

In two dimensions, various calculations yield the dynamical critical exponent z for 
simple Ising-like systems with conserved and non-conserved dynamics. A large group 
of systems are expected to be in the same dynamical universality class. It is an interesting 
question whether this class also includes models which are not in the same static 
universality class (Suzuki 1974, Forgacs er al 1980). The question is also relevant to 
certain two-dimensional systems which can be studied experimentally and are expected 
to have non-universal static critical exponents (see, for example, Roelofs and Estrup 
1983). Improved experimental techniques are expected to provide a measurement of 
z in these systems. In this work, we have studied the critical dynamics of the eight-vertex 
model (with non-conserved order parameter dynamics) which is known to have non- 
universal static critical exponents (Baxter 1973), with the Monte Carlo Renormalisation 
Group (MCRG) method. 

MCRG method was introduced by Ma (1976) as a technique to evaluate static and 
dynamic critical exponents. The method was improved by Swendsen (1979) and later 
by Wilson (1982, unpublished) and Tobochnick er al(1981). Recently, Jan and Stauffer 
(1982) (hereafter referred to as JS) have introduced the dynamical scaling concept to 
the MCRG, resulting in a simpler procedure. 

In this work, we have used a modified form of the JS method to estimate the 
exponent z at several critical points (one of which corresponds to that of the Ising 
model as a special case) of the eight-vertex model. We could not observe an appreciable 
change in z within the accuracy of our computation. 

In 0 2 the details of the method are given. The model is specified in 0 3. Section 
4 describes the computational work and the results are presented in 0 5 .  

2. The method 

Several methods are now available for the computation of the dynamical critical 
exponent z in classical spin systems. Among these tools, ones that utilise the Monte 
Carlo simulation are easily applicable to a wide range of models. Simulating the system 
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near the critical temperature T, and observing how the response time T of the system 
changes as a function of temperature T is the most direct method of estimating a value 
for z through the asymptotic relation 

T = IT - T,I-”‘, (1) 

where v is the correlation length exponent. However, the amount of computational 
effort required to obtain z (for a given accuracy) is reduced considerably if renormalisa- 
tion group (Ma 1976, Swendsen 1979, Wilson 1982 unpublished, Tobochnick et a1 
1981 and Jan and Stauffer 1982), or finite size scaling (Yalabik and Gunton 1979) 
methods are combined with the simulation. 

The MCRG method introduced by Ma, improved by Swendsen and later by Wilson 
has been applied to a variety of systems (Tobochnick et a1 1981, Jan and Stauffer 
1982, Yalabik and Gunton 1982, Katz et a1 1982, Shenker and Tobochnick 1980). 
All the above versions of the method use the Monte Carlo simulation to evaluate 
various time dependent correlations of systems near equilibrium, which are in turn 
used to estimate z. 

Recently, JS have introduced a MCRG method which estimates z from the way the 
system relaxes to equilibrium, using dynamical scaling (Jan and Stauffer 1982, Jan 
et a1 1983). In particular, they study the way the magnetisation m of the system and 
its renormalised forms relax from their saturation values. The dynamical scaling 
hypothesis asserts that at criticality the aforementioned magnetisations are related to 
one another by 

m ( t )  - m ’ ( t b z ) ,  (2) 
where m’ is the renormalised magnetisation, t the time and b the renormalisation 
scale change. By studying the relatively early time behaviour of m and m‘, JS produce 
an accurate estimate of z for the two-dimensional Ising model with a non-conserved 
parameter (Glauber model). In this work, we apply this method to a special case of 
the eight-vertex model (again with a non-conserved order parameter), although we 
use a somewhat more involved analysis of the Monte Carlo data than that implied by 
equation (2). 

3. The model 

The model we have studied can be defined through a Hamiltonian H such that 

-H/  kT = K S i $  + Q s i s j s k s , ,  (3) 
( ii) ( i j k l )  

where k is the Boltzman constant and {S i }  denote spin variables which can take values 
*1 on a square lattice. K and Q correspond to two-spin and four-spin coupling 
constants respectively and the first sum is over all next nearest neighbour pairs, while 
the second is over all spin quads on a unit square. For Q = 0, the model decomposes 
into two independent Ising models with nearest neighbour coupling K. Baxter (1973) 
has shown that the model exhibits criticality along a line on the K-Q plane defined by 

sinh 2K = exp(-2Q) (4) 

v = T/2/1. p = .n/16/1. ( 5 )  

with non-universal static critical exponents along the line. In particular 
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where p is given by 

cos fi  = tanh 2Q (6) 

and p is the order parameter exponent. 
We associate with this model a non-conserved order parameter dynamics in which 

spins flip with a transition probability which guarantees an equilibrium distribution 
that corresponds to the Hamiltonian H. We simulate this dynamics by the standard 
Monte Carlo procedure (Binder 1976) in which a site is chosen at random, and the 
spin at that site is flipped if the new configuration corresponds to a lower energy. 
Otherwise the spin is flipped with probability exp(-AElkT), where AE is the increase 
in the energy of the system upon flipping the spin. Time is measured in Monte Carlo 
steps (MCS) which corresponds to the average number of spin flip attempts performed 
per spin. 

4. Computations 

Computations were carried out on a 162 by 162 lattice (using multi-spin coding). The 
system was relaxed from the fully magnetised state and the magnetisations of the 
original as well as the renormalised lattices were computed after every MCS. Renormali- 
sations of the lattice were performed by applying the majority rule and the blocking 
scheme shown in figure 1 (resulting in a scale change of b = 3). Although the lattice 
was renormalised several times, it was found that only the original and once-renor- 
malised lattices provide usable magnetisation values (JS reported no significant improve- 
ment in accuracy by utilising higher order renormalisations). The computations were 
carried out at four critical points corresponding to Q values of -1, -0.3, 0 and 0.3. 
Eleven independent runs were performed at each Q value and the average of these 
runs were used in further analysis. The difference in our method from that of the 
original method of JS is in the way we analyse the magnetisation data. Instead of 
equation (2), which is expected to be true asymptotically for sufficiently large times, 
we assume the form 

m( t -  to) = m'[ b'(t - & ) I ,  (7) 

. 3 '/ . '/ . - 

Figure 1. The blocking scheme used in the computations. Full and open circles correspond 
to the two sublattices of the original model while the 3 x 3  blocks constructed with 
continuous and broken lines correspond to the sublattices of the renormalised version. 
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where to and tb are two constants representing a possible shift in the time scales of 
corresponding magnetisation functions. We believe that for the relatively small times 
for which we are analysing the data, equation (7) will result in a more reliable estimate 
for z. Furthermore, since both the original and the renormalised magnetisations are 
expected asymptotically to behave as (Suzuki 1977) 

9 (8)  

(9) 

- t - P / V Z  

equation (7) implies 

m ( t - t o )  = b-" " V I ' (  t - t b ) .  

The procedure for estimating z is then as follows. 
(i) The magnetisation curves m and m' were shifted in time with respect to one 

another until their ratio was as close to b-"" as possible over a specified interval, in 
conformity with equation (9) (note that p /  v = 1 /8  for all points on the critical line). 
This resulted in an optimal determination of Af = tb - to. (Although in principle one 
could also estimate p /  v from the matching procedure, the errors introduced do not 
make it practicable. ) 

(ii) The magnetisation values were then fitted to the form of equation (9). using 
the remaining two adjustable parameters (one of which is z )  over the same interval 
as in the first part of the procedure. Choice of the interval to be used in obtaining an 
estimate for z is somewhat ambiguous. We observe the same behaviour in the 
magnetisation functions as was reported by JS, namely, a fast decay in early times and 

Table 1. Estimates of z obtained at various values of Q using different intervals. U denotes 
a goodness-of-fit parameter. The intervals marked with an asterisk correspond to the 
subjective choices. 

Q=-1  

Interval 60-1 10 

Z 2.022 
U 0.084 

(MCS) 

Q = -0.3 

Interval 60-1 10* 

z 2.24 
U 0.068 

Q = 0.0 

(MCS) 

Interval 85-135* 

z 2.28 
U 0.055 

Q = 0 . 3  

Interval 120-200* 

Z 2.19 
U 0.04 

(MCS) 

(MCS) 

50-100* 

2.235 
0.085 

60-100 

2.206 
0.071 

85-200 

2.37 
0.058 

100-200 

2.26 
0.05 

60-120 50-110 

1.89 2.13 
0.086 0.1 

70-110 50-110 

2.34 2.298 
0.071 0.08 

100-200 85-160 

2.41 2.46 
0.06 0.066 

85-200 100-220 

2.32 2.40 
0.06 0.06 

50-120 

2.005 
0.112 

50-120 

2.37 
0.083 

75-200 

2.4 
0.068 

120-220 

2.41 
0.06 

70-120 

2.51 
0.085 

85-220 

2.5 
0.076 

130-220 

2.46 
0.07 

50-100 

2.298 
0.088 

100-220 75-135 

2.58 2.42 
0.078 0.08 

85-220 

2.44 
0.20 
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oscillations at late times, sandwiching a ‘usable’ region in between. The determination 
of the boundaries of these regions is necessarily subjective. In order to test our choice 
of the optimal time interval, we have made a systematic investigation of various intervals 
as other candidates for analysis. Table 1 lists these intervals, corresponding z values, 
and a goodness-of-fit parameter associated with that particular value of z. Some 
intervals do not yield a best-fit value and are not included in the table. Our (subjective) 
choice of the optimal interval never ranks worse than second-best in terms of the 
goodness of fit. Hence we feel justified in choosing the corresponding z values which 
are displayed in figure 2. 

Z * o l  1 

L 
-1 0 - 0.5 00 3.5 

0 

Figure 2. Estimates of z against the four Q values for which computations were performed. 
The length of an error bar corresponds to one standard deviation obtained from the eleven 
independent runs made at that particular Q value. 

5. Results and conclusion 

Within the accuracy of our work, we could not detect a variation in the dynamical 
critical exponent z over the range of Q values we have studied, at least one as dramatic 
as in the static exponents that do change. An invariance of the exponent z would be 
consistent with the weak universality hypothesis of Suzuki (1974, see also Forgacs et 
a1 1980). A more accurate evaluation of z over a larger range of Q values is necessary 
to investigate the possibility of a weak variation of the exponent. More work is 
necessary on models similar to the one discussed in this study before any general 
remarks can be made on the extent of the dynamical universality class. 
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